Multi-component structure of solar and stellar transition regions
نویسنده
چکیده
Emission lines from the solar transition region between the chromosphere and the corona often show a two Gaussian component profile with a core and a broad second component contributing up to 25% to the total intensity. For the first time a systematic study of the broadening and Doppler shift of the second weaker components is performed using SUMER on SOHO to explore the spatial structures of the second components. It is found that the two component structure is basically restricted to the bright chromospheric network. The narrow core component shows the familiar transition region redshifts, with hardly any blueshifts in the network. The broad second components are blueshifted compared to the core, but are still predominantly redshifted. However, quite large areas in the network (up to 20′′× 20′′) show concentrations of blueshifts in the second component. In the inter-network the line profile has a single Gaussian shape and shows small redand also some blueshifts. It is suggested that the two components in the network correspond with two spatially unresolved physical regimes in quiet Sun network: small scale loops and larger scale coronal loop structures anchored in the network. The footpoint regions of the latter are of a funnel-type and form a “canopy” above internetwork regions of the chromosphere. Shocks propagating upward from the non-magnetic chromosphere interact with this canopy, which leads to the transition region inter-network emission. A further analysis, especially of emission lines originating from higher temperatures, is required to confirm this scenario. The distribution and correlations of the line intensities, shifts and widths show that these physical regimes are heated by different mechanisms. This sheds new light on the interpretation of stellar observations in terms of coronal heating. A comparison to existing studies of stellar transition regions shows the need for more thorough theoretical investigations on the formation of stellar transition region lines.
منابع مشابه
Stellar Populations in the Central Galaxies of Fossil Groups
It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...
متن کاملThe Effect of Change the Thickness on CdS/CdTe Tandem Multi-Junction Solar Cells Efficiency
Researchers in the field of simulation have been mainly interested in the question of how to increase the efficiency of solar cells. Therefore this study aimed to investigate CdS/CdTe solar cells by applying AMPS-1D software. The impact of semiconductor layers thickness on the output parameters of the CdS/CdTe solar cell is being analyzed and studied carefully, for example, fill factor, effici...
متن کاملTHE EFFECT OF COSMIONS ON THE STABILITY OF MAIN SEQUENCE STELLAR CORES
We have studied the effect of hypothetical Cosmions on the core stability of main sequence stars (of populations I and II). Cosmions, with a mass of 4-10 Gev/c2 and a scattering cross section with nucleons of approximately 10-36 cm2 could prevail in transporting heat in the stellar cores. Raby [17] showed the existence of a local thermal instability caused by the presence of Cosmions in the sol...
متن کاملEnhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP
Multi-junction solar cells play a crucial role in the ConcentratedPhotovoltaic (CPV) Systems. Recent developments in CPV concerning high powerproduction and cost effective-ness along with better efficiency are due to theadvancements in multi-junction cells. This paper presents a simulation model of thegeneralized Multi-junction solar cell and introduces a two-bond solar ...
متن کاملStudy of Solar Magnetic and Gravitational Energies Through the Virial Theorem
Virial theorem is important for understanding stellar structures. It produces an interesting connection between magnetic and gravitational energies. Using the general form of the virial theorem including the magnetic field (toroidal magnetic field), we may explain the solar dynamo model in relation to variations of the magnetic and gravitational energies. We emphasize the role of the gravitatio...
متن کامل